Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Microbiol Spectr ; 12(3): e0007024, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334384

RESUMO

Previous work reported unprecedented differences in the intrinsic in vitro susceptibility of the Mycobacterium tuberculosis complex (MTBC) to pretomanid (Pa) using the Mycobacteria Growth Indicator Tube (MGIT) system. We tested 125 phylogenetically diverse strains from all known MTBC lineages (1-9) without known Pa resistance mutations and four strains with known resistance mutations as controls. This confirmed that MTBC, unlike most bacteria-antimicrobial combinations, displayed substantial differences in the intrinsic susceptibility relative to the technical variation of Pa MIC testing. This was also the case for the Middlebrook 7H11 (7H11) medium, demonstrating that these differences were not specific to MGIT. Notably, lineage 1 was confirmed to have intrinsically elevated MICs compared with lineages 2, 3, 4, and 7 (L2-4/7), underlining the urgent need for WHO to publish its decision of whether lineage 1 should be deemed treatable by BPaL(M), the now preferred all-oral regimen for treating rifampin-resistant tuberculosis. Lineages 5 and 6, which are most frequent in West Africa, responded differently to Pa, with lineage 5 being more similar to L2-4/7 and lineage 6 being more susceptible. More data are needed to determine whether 7H11 MICs are systematically lower than those in MGIT. IMPORTANCE: This study confirmed that the Mycobacterium tuberculosis complex lineage 1, responsible for 28% of global tuberculosis cases, is less susceptible to pretomanid (Pa). It also refined the understanding of the intrinsic susceptibilities of lineages 5 and 6, most frequent in West Africa, and lineages 8 and 9. Regulators must review whether these in vitro differences affect the clinical efficacy of the WHO-recommended BPaL(M) regimen and set breakpoints for antimicrobial susceptibility testing accordingly. Notably, regulators should provide detailed justifications for their decisions to facilitate public scrutiny.


Assuntos
Anti-Infecciosos , Mycobacterium tuberculosis , Nitroimidazóis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico
2.
Lab Chip ; 24(1): 74-84, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37999937

RESUMO

Globally, tuberculosis (TB) remains the deadliest bacterial infectious disease, and spreading antibiotic resistances is the biggest challenge for combatting the disease. Rapid and comprehensive diagnostics including drug susceptibility testing (DST) would assure early treatment, reduction of morbidity and the interruption of transmission chains. To date, rapid genetic resistance testing addresses only one to four drug groups while complete DST is done phenotypically and takes several weeks. To overcome these limitations, we developed a two-stage workflow for rapid TB diagnostics including DST from a single sputum sample that can be completed within three days. The first stage is qPCR detection of M. tuberculosis complex (MTBC) including antibiotic resistance testing against the first-line antibiotics, isoniazid (Inh) and rifampicin (Rif). The test is automated by centrifugal microfluidics and designed for point of care (PoC). Furthermore, enriched MTBC DNA is provided in a detachable sample tube to enable the second stage: if the PCR detects MTBC and resistance to either Inh or Rif, the MTBC DNA is shipped to specialized facilities and analyzed by targeted next generation sequencing (tNGS) to assess the complete resistance profile. Proof-of-concept testing of the PoC test revealed an analytical sensitivity of 44.2 CFU ml-1, a diagnostic sensitivity of 96%, and a diagnostic specificity of 100% for MTBC detection. Coupled tNGS successfully provided resistance profiles, demonstrated for samples from 17 patients. To the best of our knowledge, the presented combination of PoC qPCR with tNGS allows for the fastest comprehensive TB diagnostics comprising decentralized pathogen detection with subsequent resistance profiling in a facility specialized in tNGS.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Rifampina/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Sistemas Automatizados de Assistência Junto ao Leito , Microfluídica , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Resistência Microbiana a Medicamentos , DNA
4.
Microbiol Spectr ; : e0178123, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737628

RESUMO

As meropenem-clavulanic acid is recommended for the treatment of drug-resistant tuberculosis, the repurposing of new carbapenem combinations may provide new treatment options, including oral alternatives. Therefore, we studied the in vitro activities of meropenem-vaborbactam, meropenem-clavulanic acid, and tebipenem-clavulanic acid. One hundred nine Mycobacterium tuberculosis complex (MTBC) clinical isolates were tested, of which 69 were pan-susceptible and the remaining pyrazinamide- or multidrug-resistant. Broth microdilution MICs were determined using the EUCAST reference method. Meropenem and tebipenem were tested individually and in combination with vaborbactam 8 mg/L and clavulanic-acid 2 and 4 mg/L, respectively. Whole-genome sequencing was performed to explore resistance mechanisms. Clavulanic acid lowered the modal tebipenem MIC approximately 16-fold (from 16 to 1 mg/L). The modal meropenem MIC was reduced twofold by vaborbactam compared with an approximately eightfold decrease by clavulanic acid. The only previously described high-confidence carbapenem resistance mutation, crfA T62A, was shared by a subgroup of lineage 4.3.4.1 isolates and did not correlate with elevated MICs. The presence of a ß-lactamase inhibitor reduced the MTBC MICs of tebipenem and meropenem. The resulting MIC distribution was lowest for the orally available drugs tebipenem-clavulanic acid. Whether this in vitro activity translates to similar or greater clinical efficacy of tebipenem-clavulanic acid compared with the currently WHO-endorsed meropenem-clavulanic acid requires clinical studies. IMPORTANCE Repurposing of already approved antibiotics, such as ß-lactams in combination with ß-lactamase inhibitors, may provide new treatment alternatives for drug-resistant tuberculosis. Meropenem-clavulanic acid was more active in vitro compared to meropenem-vaborbactam. Notably, tebipenem-clavulanic acid showed even better activity, raising the potential of an all-oral treatment option. Clinical data are needed to investigate whether the better in vitro activity of tebipenem-clavulanic acid correlates with greater clinical efficacy compared with the currently WHO-endorsed meropenem-clavulanic acid.

5.
Microbiol Spectr ; 11(3): e0501322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37222610

RESUMO

Whole genome sequencing (WGS) has become the main tool for studying the transmission of Mycobacterium tuberculosis complex (MTBC) strains; however, the clonal expansion of one strain often limits its application in local MTBC outbreaks. The use of an alternative reference genome and the inclusion of repetitive regions in the analysis could potentially increase the resolution, but the added value has not yet been defined. Here, we leveraged short and long WGS read data of a previously reported MTBC outbreak in the Colombian Amazon Region to analyze possible transmission chains among 74 patients in the indigenous setting of Puerto Nariño (March to October 2016). In total, 90.5% (67/74) of the patients were infected with one distinct MTBC strain belonging to lineage 4.3.3. Employing a reference genome from an outbreak strain and highly confident single nucleotide polymorphisms (SNPs) in repetitive genomic regions, e.g., the proline-glutamic acid/proline-proline-glutamic-acid (PE/PPE) gene family, increased the phylogenetic resolution compared to a classical H37Rv reference mapping approach. Specifically, the number of differentiating SNPs increased from 890 to 1,094, which resulted in a more granular transmission network as judged by an increasing number of individual nodes in a maximum parsimony tree, i.e., 5 versus 9 nodes. We also found in 29.9% (20/67) of the outbreak isolates, heterogenous alleles at phylogenetically informative sites, suggesting that these patients are infected with more than one clone. In conclusion, customized SNP calling thresholds and employment of a local reference genome for a mapping approach can improve the phylogenetic resolution in highly clonal MTBC populations and help elucidate within-host MTBC diversity. IMPORTANCE The Colombian Amazon around Puerto Nariño has a high tuberculosis burden with a prevalence of 1,267/100,000 people in 2016. Recently, an outbreak of Mycobacterium tuberculosis complex (MTBC) bacteria among the indigenous populations was identified with classical MTBC genotyping methods. Here, we employed a whole-genome sequencing-based outbreak investigation in order to improve the phylogenetic resolution and gain new insights into the transmission dynamics in this remote Colombian Amazon Region. The inclusion of well-supported single nucleotide polymorphisms in repetitive regions and a de novo-assembled local reference genome provided a more granular picture of the circulating outbreak strain and revealed new transmission chains. Multiple patients from different settlements were possibly infected with at least two different clones in this high-incidence setting. Thus, our results have the potential to improve molecular surveillance studies in other high-burden settings, especially regions with few clonal multidrug-resistant (MDR) MTBC lineages/clades.


Assuntos
Mycobacterium tuberculosis , Humanos , Filogenia , Colômbia/epidemiologia , Genoma Bacteriano , Surtos de Doenças , Povos Indígenas
6.
Lancet Microbe ; 4(5): e358-e368, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003285

RESUMO

BACKGROUND: Bedaquiline is a core drug for the treatment of multidrug-resistant tuberculosis; however, the understanding of resistance mechanisms is poor, which is hampering rapid molecular diagnostics. Some bedaquiline-resistant mutants are also cross-resistant to clofazimine. To decipher bedaquiline and clofazimine resistance determinants, we combined experimental evolution, protein modelling, genome sequencing, and phenotypic data. METHODS: For this in-vitro and in-silico data analysis, we used a novel in-vitro evolutionary model using subinhibitory drug concentrations to select bedaquiline-resistant and clofazimine-resistant mutants. We determined bedaquiline and clofazimine minimum inhibitory concentrations and did Illumina and PacBio sequencing to characterise selected mutants and establish a mutation catalogue. This catalogue also includes phenotypic and genotypic data of a global collection of more than 14 000 clinical Mycobacterium tuberculosis complex isolates, and publicly available data. We investigated variants implicated in bedaquiline resistance by protein modelling and dynamic simulations. FINDINGS: We discerned 265 genomic variants implicated in bedaquiline resistance, with 250 (94%) variants affecting the transcriptional repressor (Rv0678) of the MmpS5-MmpL5 efflux system. We identified 40 new variants in vitro, and a new bedaquiline resistance mechanism caused by a large-scale genomic rearrangement. Additionally, we identified in vitro 15 (7%) of 208 mutations found in clinical bedaquiline-resistant isolates. From our in-vitro work, we detected 14 (16%) of 88 mutations so far identified as being associated with clofazimine resistance and also seen in clinically resistant strains, and catalogued 35 new mutations. Structural modelling of Rv0678 showed four major mechanisms of bedaquiline resistance: impaired DNA binding, reduction in protein stability, disruption of protein dimerisation, and alteration in affinity for its fatty acid ligand. INTERPRETATION: Our findings advance the understanding of drug resistance mechanisms in M tuberculosis complex strains. We have established an extended mutation catalogue, comprising variants implicated in resistance and susceptibility to bedaquiline and clofazimine. Our data emphasise that genotypic testing can delineate clinical isolates with borderline phenotypes, which is essential for the design of effective treatments. FUNDING: Leibniz ScienceCampus Evolutionary Medicine of the Lung, Deutsche Forschungsgemeinschaft, Research Training Group 2501 TransEvo, Rhodes Trust, Stanford University Medical Scientist Training Program, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Bill & Melinda Gates Foundation, Wellcome Trust, and Marie Sklodowska-Curie Actions.


Assuntos
Clofazimina , Mycobacterium tuberculosis , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico
7.
Emerg Infect Dis ; 29(5): 1046-1050, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081601

RESUMO

Applying whole-genome-sequencing, we aimed to detect transmission events of multidrug-resistant/rifampin-resistant strains of Mycobacterium tuberculosis complex at a tuberculosis hospital in Chisinau, Moldova. We recorded ward, room, and bed information for each patient and monitored in-hospital transfers over 1 year. Detailed molecular and patient surveillance revealed only 2 nosocomial transmission events.


Assuntos
Infecção Hospitalar , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Moldávia/epidemiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Testes de Sensibilidade Microbiana
8.
Lancet Infect Dis ; 23(4): e122-e137, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36868253

RESUMO

Drug-resistant tuberculosis is a substantial health-care concern worldwide. Despite culture-based methods being considered the gold standard for drug susceptibility testing, molecular methods provide rapid information about the Mycobacterium tuberculosis mutations associated with resistance to anti-tuberculosis drugs. This consensus document was developed on the basis of a comprehensive literature search, by the TBnet and RESIST-TB networks, about reporting standards for the clinical use of molecular drug susceptibility testing. Review and the search for evidence included hand-searching journals and searching electronic databases. The panel identified studies that linked mutations in genomic regions of M tuberculosis with treatment outcome data. Implementation of molecular testing for the prediction of drug resistance in M tuberculosis is key. Detection of mutations in clinical isolates has implications for the clinical management of patients with multidrug-resistant or rifampicin-resistant tuberculosis, especially in situations when phenotypic drug susceptibility testing is not available. A multidisciplinary team including clinicians, microbiologists, and laboratory scientists reached a consensus on key questions relevant to molecular prediction of drug susceptibility or resistance to M tuberculosis, and their implications for clinical practice. This consensus document should help clinicians in the management of patients with tuberculosis, providing guidance for the design of treatment regimens and optimising outcomes.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose/tratamento farmacológico , Mutação
10.
Nat Commun ; 13(1): 4936, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999208

RESUMO

Mycobacterium abscessus is an emerging multidrug-resistant non-tuberculous mycobacterium that causes a wide spectrum of infections and has caused several local outbreaks worldwide. To facilitate standardized prospective molecular surveillance, we established a novel core genome multilocus sequence typing (cgMLST) scheme. Whole genome sequencing data of 1991 isolates were employed to validate the scheme, re-analyze global population structure and set genetic distance thresholds for cluster detection and taxonomic identification. We confirmed and amended the nomenclature of the main dominant circulating clones and found that these also correlate well with traditional 7-loci MLST. Dominant circulating clones could be linked to a corresponding reference genome with less than 250 alleles while 99% of pairwise comparisons between epidemiologically linked isolates were below 25 alleles and 90% below 10 alleles. These thresholds can be used to guide further epidemiological investigations. Overall, the scheme will help to unravel the apparent global spread of certain clonal complexes and as yet undiscovered transmission routes.


Assuntos
Mycobacterium abscessus , Genoma Bacteriano , Genótipo , Tipagem de Sequências Multilocus , Mycobacterium abscessus/genética , Filogenia , Sequenciamento Completo do Genoma
11.
PLoS One ; 17(8): e0271297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947609

RESUMO

BACKGROUND: The AID line probe assay has shown promising evaluation data on the detection of Mycobacterium tuberculosis as well as 1st- and 2nd-line drug resistance, using isolates and selected clinical samples in previous studies. METHODS: The diagnostic performance of three AID-modules (AID INH/RIF, AID FQ/EMB and AID AG) was analyzed in sputum samples from patients with presumed tuberculosis against culture methods and phenotypic drug resistance as reference standards. RESULTS: 59 patients had culture-confirmed tuberculosis. All AID modules showed moderate sensitivity (46/59, 78.0%, 65.3-87.7) and very good specificity (100%, 95.5%, 93.7%). There was a high proportion of invalid tests, resulting in 32.6%, 78.3% and 19.6% of 46 AID-positive tuberculosis cases, who could not be assessed for drug resistance by the AID INH/RIF-, AID FQ/EM- and AID AG-module, respectively. A small number of patients showed drug resistance by reference standards: Three MDR-TB cases plus three, one and one patients with resistance to streptomycin, fluoroquinolones and aminoglycosides, respectively. The AID-assay detected all MDR-TB cases, two of three streptomycin-resistant TB cases, one of one of fluoroquinolone-resistant and missed one aminoglycoside-resistant TB case. DISCUSSION: The high proportion of invalid results precludes the use of the AID-assay from direct sputum-based tuberculosis and drug-resistance testing.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Resistência a Medicamentos , Fluoroquinolonas , Humanos , Testes de Sensibilidade Microbiana , Rifampina , Romênia , Estreptomicina , Tuberculose dos Linfonodos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
12.
PLoS One ; 17(8): e0271508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35930613

RESUMO

BACKGROUND: Ethiopia is one of the high multidrug-resistant tuberculosis (MDR-TB) burden countries. However, phenotypic drug susceptibility testing can take several weeks due to the slow growth of Mycobacterium tuberculosis complex (MTBC) strains. In this study, we assessed the performance of a Sanger sequencing approach to predict resistance against five anti-tuberculosis drugs and the pattern of resistance mediating mutations. METHODS: We enrolled 226 MTBC culture-positive MDR-TB suspects and collected sputum specimens and socio-demographic and TB related data from each suspect between June 2015 and December 2016 in Addis Ababa, Ethiopia. Phenotypic drug susceptibility testing (pDST) for rifampicin, isoniazid, pyrazinamide, ethambutol, and streptomycin using BACTEC MGIT 960 was compared with the results of a Sanger sequencing analysis of seven resistance determining regions in the genes rpoB, katG, fabG-inhA, pncA, embB, rpsL, and rrs. RESULT: DNA isolation for Sanger sequencing was successfully extracted from 92.5% (209/226) of the MTBC positive cultures, and the remaining 7.5% (17/226) strains were excluded from the final analysis. Based on pDST results, drug resistance proportions were as follows: isoniazid: 109/209 (52.2%), streptomycin: 93/209 (44.5%), rifampicin: 88/209 (42.1%), ethambutol: 74/209 (35.4%), and pyrazinamide: 69/209 (33.0%). Resistance against isoniazid was mainly mediated by the mutation katG S315T (97/209, 46.4%) and resistance against rifampicin by rpoB S531L (58/209, 27.8%). The dominating resistance-conferring mutations for ethambutol, streptomycin, and pyrazinamide affected codon 306 in embB (48/209, 21.1%), codon 88 in rpsL (43/209, 20.6%), and codon 65 in pncA (19/209, 9.1%), respectively. We observed a high agreement between phenotypic and genotypic DST, such as 89.9% (at 95% confidence interval [CI], 84.2%-95.8%) for isoniazid, 95.5% (95% CI, 91.2%-99.8%) for rifampicin, 98.6% (95% CI, 95.9-100%) for ethambutol, 91.3% (95% CI, 84.6-98.1%) for pyrazinamide and 57.0% (95% CI, 46.9%-67.1%) for streptomycin. CONCLUSION: We detected canonical mutations implicated in resistance to rifampicin, isoniazid, pyrazinamide, ethambutol, and streptomycin. High agreement with phenotypic DST results for all drugs renders Sanger sequencing promising to be performed as a complementary measure to routine phenotypic DST in Ethiopia. Sanger sequencing directly from sputum may accelerate accurate clinical decision-making in the future.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Etambutol/farmacologia , Etambutol/uso terapêutico , Etiópia/epidemiologia , Humanos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Mutação , Pirazinamida , Rifampina/farmacologia , Rifampina/uso terapêutico , Estreptomicina/farmacologia , Estreptomicina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética
13.
Genome Med ; 14(1): 95, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35989319

RESUMO

BACKGROUND: Multidrug-resistant (MDR) Mycobacterium tuberculosis complex (MTBC) strains are a serious health problem in India, also contributing to one-fourth of the global MDR tuberculosis (TB) burden. About 36% of the MDR MTBC strains are reported fluoroquinolone (FQ) resistant leading to high pre-extensively drug-resistant (pre-XDR) and XDR-TB (further resistance against bedaquiline and/or linezolid) rates. Still, factors driving the MDR/pre-XDR epidemic in India are not well defined. METHODS: In a retrospective study, we analyzed 1852 consecutive MTBC strains obtained from patients from a tertiary care hospital laboratory in Mumbai by whole genome sequencing (WGS). Univariate and multivariate statistics was used to investigate factors associated with pre-XDR. Core genome multi locus sequence typing, time scaled haplotypic density (THD) method and homoplasy analysis were used to analyze epidemiological success, and positive selection in different strain groups, respectively. RESULTS: In total, 1016 MTBC strains were MDR, out of which 703 (69.2%) were pre-XDR and 45 (4.4%) were XDR. Cluster rates were high among MDR (57.8%) and pre-XDR/XDR (79%) strains with three dominant L2 (Beijing) strain clusters (Cl 1-3) representing half of the pre-XDR and 40% of the XDR-TB cases. L2 strains were associated with pre-XDR/XDR-TB (P < 0.001) and, particularly Cl 1-3 strains, had high first-line and FQ resistance rates (81.6-90.6%). Epidemic success analysis using THD showed that L2 strains outperformed L1, L3, and L4 strains in short- and long-term time scales. More importantly, L2 MDR and MDR + strains had higher THD success indices than their not-MDR counterparts. Overall, compensatory mutation rates were highest in L2 strains and positive selection was detected in genes of L2 strains associated with drug tolerance (prpB and ppsA) and virulence (Rv2828c). Compensatory mutations in L2 strains were associated with a threefold increase of THD indices, suggesting improved transmissibility. CONCLUSIONS: Our data indicate a drastic increase of FQ resistance, as well as emerging bedaquiline resistance which endangers the success of newly endorsed MDR-TB treatment regimens. Rapid changes in treatment and control strategies are required to contain transmission of highly successful pre-XDR L2 strains in the Mumbai Metropolitan region but presumably also India-wide.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Células Clonais , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Mycobacterium tuberculosis/genética , Estudos Retrospectivos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
14.
Nat Commun ; 13(1): 5105, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042200

RESUMO

Transmission-driven multi-/extensively drug resistant (M/XDR) tuberculosis (TB) is the largest single contributor to human mortality due to antimicrobial resistance. A few major clades of the Mycobacterium tuberculosis complex belonging to lineage 2, responsible for high prevalence of MDR-TB in Eurasia, show outstanding transnational distributions. Here, we determined factors underlying the emergence and epidemic spread of the W148 clade by genome sequencing and Bayesian demogenetic analyses of 720 isolates from 23 countries. We dated a common ancestor around 1963 and identified two successive epidemic expansions in the late 1980s and late 1990s, coinciding with major socio-economic changes in the post-Soviet Era. These population expansions favored accumulation of resistance mutations to up to 11 anti-TB drugs, with MDR evolving toward additional resistances to fluoroquinolones and second-line injectable drugs within 20 years on average. Timescaled haplotypic density analysis revealed that widespread acquisition of compensatory mutations was associated with transmission success of XDR strains. Virtually all W148 strains harbored a hypervirulence-associated ppe38 gene locus, and incipient recurrent emergence of prpR mutation-mediated drug tolerance was detected. The outstanding genetic arsenal of this geographically widespread M/XDR strain clade represents a "perfect storm" that jeopardizes the successful introduction of new anti-M/XDR-TB antibiotic regimens.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Teorema de Bayes , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
15.
Lancet Microbe ; 3(9): e672-e682, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35907429

RESUMO

BACKGROUND: Whole-genome sequencing (WGS) of Mycobacterium tuberculosis complex has become an important tool in diagnosis and management of drug-resistant tuberculosis. However, data correlating resistance genotype with quantitative phenotypic antimicrobial susceptibility testing (AST) are scarce. METHODS: In a prospective multicentre observational study, 900 clinical M tuberculosis complex isolates were collected from adults with drug-resistant tuberculosis in five high-endemic tuberculosis settings around the world (Georgia, Moldova, Peru, South Africa, and Viet Nam) between Dec 5, 2014, and Dec 12, 2017. Minimum inhibitory concentrations (MICs) and resulting binary phenotypic AST results for up to nine antituberculosis drugs were determined and correlated with resistance-conferring mutations identified by WGS. FINDINGS: Considering WHO-endorsed critical concentrations as reference, WGS had high accuracy for prediction of resistance to isoniazid (sensitivity 98·8% [95% CI 98·5-99·0]; specificity 96·6% [95% CI 95·2-97·9]), levofloxacin (sensitivity 94·8% [93·3-97·6]; specificity 97·1% [96·7-97·6]), kanamycin (sensitivity 96·1% [95·4-96·8]; specificity 95·0% [94·4-95·7]), amikacin (sensitivity 97·2% [96·4-98·1]; specificity 98·6% [98·3-98·9]), and capreomycin (sensitivity 93·1% [90·0-96·3]; specificity 98·3% [98·0-98·7]). For rifampicin, pyrazinamide, and ethambutol, the specificity of resistance prediction was suboptimal (64·0% [61·0-67·1], 83·8% [81·0-86·5], and 40·1% [37·4-42·9], respectively). Specificity for rifampicin increased to 83·9% when borderline mutations with MICs overlapping with the critical concentration were excluded. Consequently, we highlighted mutations in M tuberculosis complex isolates that are often falsely identified as susceptible by phenotypic AST, and we identified potential novel resistance-conferring mutations. INTERPRETATION: The combined analysis of mutations and quantitative phenotypes shows the potential of WGS to produce a refined interpretation of resistance, which is needed for individualised therapy, and eventually could allow differential drug dosing. However, variability of MIC data for some M tuberculosis complex isolates carrying identical mutations also reveals limitations of our understanding of the genotype and phenotype relationships (eg, including epistasis and strain genetic background). FUNDING: Bill & Melinda Gates Foundation, German Centre for Infection Research, German Research Foundation, Excellence Cluster Precision Medicine of Inflammation (EXC 2167), and Leibniz ScienceCampus EvoLUNG.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Genômica , Humanos , Mycobacterium tuberculosis/genética , Fenótipo , Estudos Prospectivos , Rifampina/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico
16.
Genes (Basel) ; 13(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35741753

RESUMO

Mycobacterium tuberculosis complex (MTBC) Lineage 3 (L3) strains are abundant in world regions with the highest tuberculosis burden. To investigate the population structure and the global diversity of this major lineage, we analyzed a dataset comprising 2682 L3 strains from 38 countries over 5 continents, by employing 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats genotyping (MIRU-VNTR) and drug susceptibility testing. We further combined whole-genome sequencing (WGS) and phylogeographic analysis for 373 strains representing the global L3 genetic diversity. Ancestral state reconstruction confirmed that the origin of L3 strains is located in Southern Asia and further revealed multiple independent introduction events into North-East and East Africa. This study provides a systematic understanding of the global diversity of L3 strains and reports phylogenetic variations that could inform clinical trials which evaluate the effectivity of new drugs/regimens or vaccine candidates.


Assuntos
Mycobacterium tuberculosis , Genótipo , Testes de Sensibilidade Microbiana , Repetições Minissatélites , Mycobacterium tuberculosis/genética , Filogenia
17.
JAC Antimicrob Resist ; 4(2): dlac042, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35465240

RESUMO

Background: Rifampicin- or multidrug-resistant (RR/MDR) Mycobacterium tuberculosis complex (MTBC) strains account for considerable morbidity and mortality globally. WGS-based prediction of drug resistance may guide clinical decisions, especially for the design of RR/MDR-TB therapies. Methods: We compared WGS-based drug resistance-predictive mutations for 42 MTBC isolates from MDR-TB patients in Tanzania with the MICs of 14 antibiotics measured in the Sensititre™ MycoTB assay. An isolate was phenotypically categorized as resistant if it had an MIC above the epidemiological-cut-off (ECOFF) value, or as susceptible if it had an MIC below or equal to the ECOFF. Results: Overall, genotypically non-wild-type MTBC isolates with high-level resistance mutations (gNWT-R) correlated with isolates with MIC values above the ECOFF. For instance, the median MIC value (mg/L) for rifampicin-gNWT-R strains was >4.0 (IQR 4.0-4.0) compared with 0.5 (IQR 0.38-0.50) in genotypically wild-type (gWT-S, P < 0.001); isoniazid-gNWT-R >4.0 (IQR 2.0-4.0) compared with 0.25 (IQR 0.12-1.00) among gWT-S (P = 0.001); ethionamide-gNWT-R 15.0 (IQR 10.0-20.0) compared with 2.50 (IQR; 2.50-5.00) among gWT-S (P < 0.001). WGS correctly predicted resistance in 95% (36/38) and 100% (38/38) of the rifampicin-resistant isolates with ECOFFs >0.5 and >0.125 mg/L, respectively. No known resistance-conferring mutations were present in genes associated with resistance to fluoroquinolones, aminoglycosides, capreomycin, bedaquiline, delamanid, linezolid, clofazimine, cycloserine, or p-amino salicylic acid. Conclusions: WGS-based drug resistance prediction worked well to rule-in phenotypic drug resistance and the absence of second-line drug resistance-mediating mutations has the potential to guide the design of RR/MDR-TB regimens in the future.

18.
Genes (Basel) ; 13(3)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328028

RESUMO

Kenya is a country with a high tuberculosis (TB) burden. However, knowledge on the genetic diversity of Mycobacterium tuberculosis complex (MTBC) strains and their transmission dynamics is sparsely available. Hence, we used whole-genome sequencing (WGS) to depict the genetic diversity, molecular markers of drug resistance, and possible transmission clusters among MTBC strains in urban and slum settings of Nairobi. We analyzed 385 clinical MTBC isolates collected between 2010 and 2015 in combination with patients' demographics. We showed that the MTBC population mainly comprises strains of four lineages (L1-L4). The two dominating lineages were L4 with 55.8% (n = 215) and L3 with 25.7% (n = 99) of all strains, respectively. Genome-based cluster analysis showed that 30.4% (117/385) of the strains were clustered using a ≤5 single-nucleotide polymorphism (SNP) threshold as a surrogate marker for direct patient-to-patient MTBC transmission. Moreover, 5.2% (20/385) of the strains were multidrug-resistant (MDR), and 50.0% (n = 10) were part of a genome-based cluster (i.e., direct MDR MTBC transmission). Notably, 30.0% (6/20) of the MDR strains were resistant to all first-line drugs and are part of one molecular cluster. Moreover, TB patients in urban living setting had 3.8 times the odds of being infected with a drug-resistant strain as compared to patients from slums (p-value = 0.002). Our results show that L4 strains are the main causative agent of TB in Nairobi and MDR strain transmission is an emerging concern in urban settings. This emphasizes the need for more focused infection control measures and contact tracing of patients with MDR TB to break the transmission chains.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Quênia/epidemiologia , Epidemiologia Molecular , Mycobacterium tuberculosis/genética , Áreas de Pobreza , Tuberculose/epidemiologia , Tuberculose/genética
19.
J Antimicrob Chemother ; 77(6): 1685-1693, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35260883

RESUMO

OBJECTIVES: To develop a robust phenotypic antimicrobial susceptibility testing (AST) method with a correctly set breakpoint for pretomanid (Pa), the most recently approved anti-tuberculosis drug. METHODS: The Becton Dickinson Mycobacterial Growth Indicator Tube™ (MGIT) system was used at six laboratories to determine the MICs of a phylogenetically diverse collection of 356 Mycobacterium tuberculosis complex (MTBC) strains to establish the epidemiological cut-off value for pretomanid. MICs were correlated with WGS data to study the genetic basis of differences in the susceptibility to pretomanid. RESULTS: We observed ancient differences in the susceptibility to pretomanid among various members of MTBC. Most notably, lineage 1 of M. tuberculosis, which is estimated to account for 28% of tuberculosis cases globally, was less susceptible than lineages 2, 3, 4 and 7 of M. tuberculosis, resulting in a 99th percentile of 2 mg/L for lineage 1 compared with 0.5 mg/L for the remaining M. tuberculosis lineages. Moreover, we observed that higher MICs (≥8 mg/L), which probably confer resistance, had recently evolved independently in six different M. tuberculosis strains. Unlike the aforementioned ancient differences in susceptibility, these recent differences were likely caused by mutations in the known pretomanid resistance genes. CONCLUSIONS: In light of these findings, the provisional critical concentration of 1 mg/L for MGIT set by EMA must be re-evaluated. More broadly, these findings underline the importance of considering the global diversity of MTBC during clinical development of drugs and when defining breakpoints for AST.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Tuberculose , Antituberculosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia
20.
Genome Med ; 14(1): 13, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139905

RESUMO

BACKGROUND: Bacteria belonging to the genus Haemophilus cause a wide range of diseases in humans. Recently, H. influenzae was classified by the WHO as priority pathogen due to the wide spread of ampicillin resistant strains. However, other Haemophilus spp. are often misclassified as H. influenzae. Therefore, we established an accurate and rapid whole genome sequencing (WGS) based classification and serotyping algorithm and combined it with the detection of resistance genes. METHODS: A gene presence/absence-based classification algorithm was developed, which employs the open-source gene-detection tool SRST2 and a new classification database comprising 36 genes, including capsule loci for serotyping. These genes were identified using a comparative genome analysis of 215 strains belonging to ten human-related Haemophilus (sub)species (training dataset). The algorithm was evaluated on 1329 public short read datasets (evaluation dataset) and used to reclassify 262 clinical Haemophilus spp. isolates from 250 patients (German cohort). In addition, the presence of antibiotic resistance genes within the German dataset was evaluated with SRST2 and correlated with results of traditional phenotyping assays. RESULTS: The newly developed algorithm can differentiate between clinically relevant Haemophilus species including, but not limited to, H. influenzae, H. haemolyticus, and H. parainfluenzae. It can also identify putative haemin-independent H. haemolyticus strains and determine the serotype of typeable Haemophilus strains. The algorithm performed excellently in the evaluation dataset (99.6% concordance with reported species classification and 99.5% with reported serotype) and revealed several misclassifications. Additionally, 83 out of 262 (31.7%) suspected H. influenzae strains from the German cohort were in fact H. haemolyticus strains, some of which associated with mouth abscesses and lower respiratory tract infections. Resistance genes were detected in 16 out of 262 datasets from the German cohort. Prediction of ampicillin resistance, associated with blaTEM-1D, and tetracycline resistance, associated with tetB, correlated well with available phenotypic data. CONCLUSIONS: Our new classification database and algorithm have the potential to improve diagnosis and surveillance of Haemophilus spp. and can easily be coupled with other public genotyping and antimicrobial resistance databases. Our data also point towards a possible pathogenic role of H. haemolyticus strains, which needs to be further investigated.


Assuntos
Antibacterianos , Infecções por Haemophilus , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Haemophilus/genética , Infecções por Haemophilus/epidemiologia , Infecções por Haemophilus/microbiologia , Humanos , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...